Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans.
نویسندگان
چکیده
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
منابع مشابه
Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias.
SCN5A encodes the α subunit of the major cardiac sodium channel Na(V)1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure a...
متن کاملPharmaco-Electrophysiology of Isolated Perfused Rat Heart Assessed with Flexible Microelectrode Arrays
Background: Heart slices and enzymatically dissociated cardiomyocytes are used in cardiac safety pharmacology for extracellular recording using microelectrode array (MEA). The aim of this study was to set up and validate a vitro cardiac surface mapping system for studies pharmaco-electrophysiology effects in Langendorff perfused rat hearts by flexible MEA. Materials and Methods: Hearts isolated...
متن کاملProtective effect of pharmacologic postconditioning with Natural Honey against left ventricular ischemia/reperfusion-induced arrhythmias in isolated heart of rat
Introduction: This study was aimed to investigate the effects of postconditioning by natural honey on cardiac arrhythmias in the ischemic isolated rat heart. Methods: Male Wistar rats were divided into four groups then anesthetized by sodium pentobarbital. The animal hearts were removed and quickly mounted on a Langendorff apparatus and perfused under constant pressure by a modified Krebs-H...
متن کاملNew manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملAntiarrhythmic Effect of the Ethanol Extract of Pomegranate Mesocarp on Isolated Heart Following Ischemia and Reperfusion
Aims: Ischemic heart disease is the most prevalent cause of mortality in current populations. In recent years, many researchers have focused on plants to discover new natural therapeutic agents. The aim of this study was to evaluate the antiarrhythmic effect of the ethanolic extract of pomegranate mesocarp on rat isolated heart following myocardial ischemia and reperfusion. Materials & Methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007